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Abstract. Two-electron distribution functions and
intracules are functions of electronic coordinates and
occupy an important, and frequently overlooked, middle
ground between the beguiling simplicity of electron
densities and the bewildering complexity of wavefunc-
tions. We survey the functions that have been considered
by earlier workers and introduce two new ones, the
Wigner intracule and the action intracule, that have not
previously been discussed. To illustrate their usefulness,
we consider the intracules of jellium, a few small atoms
and the dissociating hydrogen molecule.
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Wigner intracule

1 Introduction

The goal of quantum chemistry, it is often said, is to be
able to solve the Schrédinger equation for arbitrarily
complex chemical systems. This would certainly be an
achievement, for it would yield the energy of a system
and all of the many observables (e.g. vibrational
frequencies, NMR shifts) that can be extracted from
various derivatives of the energy [1]. We could then
compute the numerical value of any physical quantity of
interest to chemists and we would have completed a
major scientific revolution.

However, we would still not be entirely satisfied.
Whereas the energy and its derivatives are just numbers,
easily understood and interpreted, wavefunctions are
extraordinarily complicated things and no mortal mind
could assimilate the information contained in the
wavefunction of even a simple molecule like ethanol.
After all, it would depend on the coordinates of each of
the nine nuclei and 26 electrons and would describe ev-
ery pirouette of the intricate dance in which they engage.
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But do we really need this level of detail? Is it
necessary, in order to understand chemical phenomena,
that we master every detail of the complex electronic
choreography? Organic and inorganic chemists do not
appear to think so and, during the last century, made
astonishing progress using only the most elementary
constructs of electronic structure theory: the orbital, the
electron pair, and the dubious curly arrow. But how can
this be? Do experimentalists and theoreticians inhabit
different universes?

The truth is that we occupy the same universe but
that there is more than one language and level in which
a chemical system can be comprehended. The reduc-
tionist theoretician, echoing his distant forebears,
believes that there are one-body problems, two-body
problems and many-body problems and clings to the
hope that, if he can solve the first two, the solution to
the last will emerge as a straightforward corollary. The
holist experimentalist observes that molecular structure
is correlated with molecular reactivity and regards
electrons as the glue that holds everything together.
Each perspective has its uses and, since they are views of
the same physical object, there must exist relationships
between them. Coulson’s famous aphorism, “Give me
insight, not numbers!” urges us to discover these rela-
tionships but it has taken years for the connections be-
tween the bewildering complexity of the wavefunction
and the comparative simplicity of the holist’s molecule
to emerge.

For some time, Parr and his collaborators have
argued [2] that the electron density p(r) is the point at
which the reductionist and holist can meet and density
functional theory [3] is now an entrenched paradigm
within the quantum chemistry community. Nonetheless,
it is clear that the simple one-electron picture is not
sufficient for all purposes and there is much to learned
from also studying pairs of electrons. In the following
sections, we discuss the variety of one- and two-electron
distributions that can be derived for an n-electron system
whose position—-space wavefunction is ¥(r|,r5,....r))
and momentum-space wavefunction is ®@(p/, p,...,p,),
respectively. These lead to an important class of
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functions called intracules and we present and discuss a
number of examples of these including two, the Wigner
intracule and the action intracule, that have not previ-
ously been discussed. We use atomic units throughout.

2 One-electron distribution functions

The most familiar one-electron probability distribution
is the electron density

p(r) =n{P|5(r] — 1)) |¥) , (2.1)

which gives the probability that an electron will be found
at the point ry. Similarly, the momentum density

() = n(®o(py — py)|D) (2.2)

gives the probability that an electron will be found with
a momentum p;. Furthermore, if p; is the spinless
reduced first-order density matrix [4] of our system, one
may loosely interpret the first-order Wigner density,

1 .
Wl(th]):F/pl(r] +4q,r1] —q)e 2P|‘ldq ,

(2.3)

as the probability that an electron will be found at r;
with momentum p;. This interpretation is dubious. In
fact, W (r;, py) is not even positive everywhere and it is
sometimes described as a “‘quasi-probability” density [2,
5]. Much of this overview will be concerned with such
densities and we will also use the term ‘“quasi-probabil-
ity” to describe them.

The nth-order function, W, was defined by Wigner
[6] and the introduction of reduced Wigner functions has
been credited [7] to Groenewold [8]. Phase-space quan-
tum distribution functions have been reviewed by a
number of authors [5, 9]; however, explicit calculations
of such functions for atoms and molecules have been
relatively rare. Dahl and Springborg [10] considered
Wi(rq, p1) for the ground state of the hydrogen atom and
found that, although they could not compute it in closed
form for the exact exponential wavefunction because the
integrals were too hard, one can compute Wi(r;, p1)
if the wavefunction is approximated by a sum of
Gaussians. In this way, they showed that the function is
highly oscillatory and has large negative regions.

Subsequently, Springborg [11] examined changes in
the LiH molecule during bond formation and Spring-
borg and Dahl [7] have constructed W(r;, p;) for the
He, Be, Ne, Ar and Zn atoms using Hartree—Fock (HF)
wavefunctions.

3 Two-electron distribution functions

The most familiar two-electron probability distribution
is the two-electron density

n(n—1)

p(l’l,l‘z): 3 (31>

which gives the probability that one electron will be
found at r; and another at r,. Similarly, the two-electron
momentum density

(Plo(r) —r)o(ry —r)[¥)

n(n—1
m(p1, p2) = % (@5(py = P1)O(Py — P2)|P)
gives the probability that one electron will be found with
a momentum p; and another with momentum p,.
Furthermore, as previously, if p, is the spinless reduced
second-order density matrix of a system, one may
interpret the second-order Wigner density,

(3.2)

Wa(ri,py,12,p2)

1
:;/pz(n +qp,1 —q, 12+ qy, 12 —q>)

% 672[(P1<‘l|+pz-‘h)dqldq2 , (3.3)

as the quasi-probability of finding one electron at ry; with
momentum p; and another at r, with momentum p,. We
note that, like W(r,p), the second-order function
W,(r,p1.r2,p2) is not positive everywhere.

For a detailed discussion, we refer the interested
reader to the helpful paper by Thakkar et al. [12] which
examines the relationship between all of the distributions
(Egs. 2.1, 2.2, 2.3, 3.1, 3.2, 3.3).

4 Intracules

For some purposes, the relative position of two electrons
is more important than their absolute positions and
it proves useful to reduce the two-electron density
(Eq. 3.1) further. This leads to the position intracule

P(u) = /p(rl,rz)(i(rlz — u)dr;dr,dQ,

n(n—1
=100 o — )]
where Q, is the angular part of u, which gives the
probability of finding two electrons separated by a
distance u and is the generating kernel for expectations
[13, 14] of functions of r;,, i.e.

[ rtopwan =" i)
0

(4.1)

(4.2)

The P(u) intracule has been widely discussed in the
literature. It appeared in the work of Eddington [15], was
introduced into chemistry by Coulson and Neilson [16]
and was advocated by Coleman [17]. It has been particu-
larly popular among Canadian theoreticians and their
collaborators and Smith, Boyd, Thakkar, Cioslowski and
Ugalde have each made significant contributions to its
development [13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32]. Much of the earlier work sought to com-
pare the intracules generated from correlated wavefunc-
tions with those from uncorrelated calculations, for the
differences between these yield information about the ef-
fects of electron correlation. Our own work has concen-
trated on the extraction of P(u) from uncorrelated (i.e.
HF) wavefunctions and we have shown that these can be
computed efficiently, even for large molecules.

We note that the P(u) intracule, which is the distribu-
tion of the interelectronic distance u, has a cousin called



the extracule, which gives the distribution of the centre of
mass (r; +1r,)/2. In practice, this function is less useful than
the intracule and we do not discuss it further here.

In the same way as the two-electron density (Eq. 3.1)
yields the position intracule P(u), the two-electron
momentum density (Eq. 3.2) yields the momentum
intracule,

M(v) = / 7(p1.92)8(p12 — v)dp dpadQ,

nn—1
e
which gives the probability of finding two electrons
moving with a relative momentum v. It is the generating
kernel for expectations of functions of py,, i.e.

(4.3)

=MD o) |

/ f ()M (v)dv (4.4)
0

and has been investigated by a number of authors [14,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53], led initially by Banyard and, more
recently, by Koga. Again, whereas most of this work
compares correlated and uncorrelated momentum
intracules, our work [14] has focused on the efficient
extraction of M(v) from HF wavefunctions in large
molecules.

The second-order Wigner density (Eq. 3.3) can be
reduced in an analogous way to yield

W(u,v) = / Wa(ripir2p;)o(ri2 — u)

x 0(p;, — v)dr;dr,dp,dp,dQ,dQ, , (4.5)

which we call the Wigner intracule. This function gives
the quasi-probability of finding two electrons at a
distance # and moving with relative momentum v and
is thus the generating kernel for expectation values of
functions of rj, and py,. Thus,

/ /f(u, 0)P(u,v)du dv = n(nz— D (f(r12,p12)).  (4.6)
0 0

Although the Wigner intracule is not strictly a joint
probability distribution for u and v, it does yield the
position and momentum intracules when integrated
appropriately, i.e.

/ W(u,v)dv = P(u) , (4.7
0
/ W (u,v)du = M(v) . (4.8)
0

As far as we know, Wigner intracules have not pre-
viously been discussed in the literature.

Finally, we can obtain the distribution of the variable
w=uv by appropriately integrating the Wigner intracule
to give
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(4.9)

which we call the action intracule. The function A(w)
gives the quasi-probability of finding two electrons with
riopi2=w and is therefore the generating kernel for
expectation values of functions of rj,p;,. Thus,

n(n—1)

/fWMWMWZ -
0

(f(rizp2)) - (4.10)

Action intracules have not previously appeared in the
literature.

Although the P(u), M(v), W(u,v) and A(w) intra-
cules are quite different, they share many of the same
global properties and we will use the symbol Z to
represent a general intracule. For example, each of the
four can be partitioned into spin intracules and so we
can write

Z2=7"% 774 7P

by (4.11)

where Z*# pertains to opposite-spin electrons and Z” to
same-spin electrons. In the same way, it can be shown
that the integral of an intracule or its spin component is
given by

_n(n—1)
/Z_T , (4.12)
/ 7 = n*nf | (4.13)
n*(n* — nP(nf —
/Z”: ( 3 1)—1- ( 3 D ; (4.14)

where n* and n” are the numbers of o and f electrons,
respectively.

5 Intracules from single-determinant wavefunctions
If we confine our attention to determinantal wavefunc-

tions (such as those from HF theory), it can be shown
that the general intracule can be written as

0= W),

ij
=Y DD}, (wio); . (5.1)
e
1
7 =23 (W), — W),
U
1 o o o o
= EZ (DMDM - D,uaDvA> (:“V)“U)Z ) (5.2)

uvic
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- D}, D), ) (wvia), .

(5.3)

where D* and D? are the usual spin density matrices.
The (Viyjh1)z are appropriate two-electron integrals
in the molecular orbital basis and the (uvie)z are
the corresponding integrals in the atomic orbital
basis. Some of these integrals have been discussed
previously.

The position integral is

(1vic)p = / / P10, (1) (r +
(5.4)

If the basis functions are Gaussian, the integral can
be reduced [30] to elementary functions. If ¢, (r), ¢.(r),
¢i(r) and ¢,(r) are concentric s-type Gaussians with
exponents a, 8, y and J, respectively, the integral is

n N2/ n N3\
(ssss)p = (W) (m) ()

u)p,(r + u)drdQ,

x 4mu® exp(—0u?) | (5.5)
1 I
0=(——+— . 5.6
(a A 5) G4
The (ssss)p integral is always positive.
The momentum integral is
wiohy = oz [[[ 3006+ 0630+ )
x ¢,(u)jo(gv)drdqdu . (5.7)

If the basis functions are Gaussian, the integral can
be reduced [14] to elementary functions. If ¢, (r), ¢.(r),
¢;(r) and ¢,(r) are concentric s-type Gaussians with
exponents «, 8, y and J, respectively, the integral is

A\ 3/2
(s388)\ = (oc i ﬁ>3/2 <y%>3/2 (g) 4m® exp(—00%) |

(5.8)
1 1\
6 = o ,
<&+ﬂ ﬁ+5>

where the Fourier exponents &, 8,  and  are given by
1/(40), 1/(4[3) 1/(4y) and 1/(49), respectively. The (sss5)m
integral is always posmve

The Wigner integral is

~sa [[[ s

X e(r +

(5.9)

(1vio)y q)$;(r+q+u)

u)jo(qv)drdqdQ, . (5.10)

If the basis functions are Gaussian and collinear, the
integral can be expressed [54] in terms of elementary
functions and error functions [55]. In the noncollinear
case, we have reduced Eq. (5.10) to a 1D integral [54]
which can be evaluated either by series expansion or by
quadrature. If ¢, (r), ¢,(r), ¢,(r) and ¢,(r) are concentric
s-type gaussians with exponents o, ff, v and J, respec-
tively, the integral is

(5588)w
27'[222 5 )
= o o) Pp g g P lTr) expl=RT)olu)
(5.11)

_ By
S (5.12)
=l (5.13)

a+o pty

o B B s
"= e Biy Bis axd (5.14)

The (ssss)w integral is not always positive. Its sign is
determined by the sign of jo(yuv).
The action integral is

“e /][ s

X ¢ (r+

(uvio) o q)¢;(r+q+u)

u)jo (%) G) drdqdu .
(5.15)

If the basis functions are Gaussian and concentric,
the integral can be expressed in terms of elementary
functions and modified Bessel functions of the second
kind Ky (x) [55]. In the nonconcentric case, we have
reduced the action integral to a 2D integral that can
be evaluated by quadrature. If ¢,(r), ¢(r), ¢,(r) and
¢,(r) are concentric s-type Gaussians with exponents

o, f, ¥ and 9, respectively, the integral is
(ss58) 2mw

ACERR RN

The sign of the (ssss) integral is determined by the
sign of jo(yw).
All four of these intracule integrals have the same

total content
% oo
(55858) / / (sss8)ydvdu
00

( )d ( T >3/2< - )3/2
SSSSA w = a+ﬂ 'y+5 .

(5.17)

The position integrals, being invariant to the per-
mutations {p <> v, 1 <> g, w < Aa}, exhibit eightfold

Ko(2xiw)jo(nw) . (5.16)




symmetry. The momentum, Wigner and action integrals,
being invariant only to the permutations {yo <> v4,
v <> Ag}, exhibit only fourfold symmetry.

We have implemented the calculation of intracule
integrals (uvig)z, for s- and p-type basis functions,
within the Mathematica [56] and Q-Chem [57] packages
and have used these to obtain the numerical results that
we discuss later.

Because each intracule is a two-electron distribution,
it can be decomposed into a sum of contributions from
each pair of occupied orbitals in the system. Thus,

Z(u,v) = zn:Z,-j(u,v) .

i<j

(5.18)

6 Intracules for the uniform electron gas

Although our ultimate interest lies in molecular intra-
cules, the uniform electron gas (or jellium) is the basis
for a variety of density functionals for exchange and
correlation [2] and is a system of fundamental interest in
solid-state physics. It is also an admirably simple but
qualitatively accurate model of electronic structure in
large molecules. Its intracules are likely to share some
the important characteristics of the intracules of
more chemically interesting many-electron systems,
while retaining a simplicity that allows us to manipulate
them easily.

The one-electron density p(r) of jellium is constant
everywhere, i.e. p(r) = p = n/V, but the antisymmetry
of the determinantal wavefunction induces variations
in the two-electron density p(ry, r») and leads, therefore,
to nontrivial intracules. Fortunately, because of the
structural simplicity of jellium, these intracules can be
evaluated in closed form using Egs. (5.4), (5.7), (5.10)
and (5.15).

The wavefunction for jellium of density p is a deter-
minant of plane-wave orbitals,
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whose momenta k are uniformly distributed in the first
octant of the Fermi ball with radius

ke = (3n%p)'/3 . (6.2)

A sum over these orbitals can be achieved through an
appropriate integration, for example,

kg
1 1 4nkd  p
zkjwklpk o / ke dk = o~ —F =3 (6.3)
0

Because jellium contains an infinite number of elec-
trons in an infinite volume, its intracules are also infinite.
For this reason, specific intracules (i.e. intracules per
unit volume), which we will indicate using an overbar,
are more convenient.

The specific position intracules are [29]

2

P (u) = dmus? (%) : (6.4)
P (u) = dm® [1 - (%) 2] <%2) (6.5)
and

P(u) = 4mi [1 —g (j lz(f; ”)ﬂ <p22> , (6.6)

where ji(x) is the first-order spherical Bessel function
[55]. The antiparallel intracule shows that electrons of
opposite spin are completely uncorrelated in jellium and
therefore the probability of finding two at a distance
u depends only on the Jacobian factor. The parallel
intracule shows, as originally found by Dirac [58], that
electrons of parallel spin are locally correlated in jellium
and are unlikely to be found at a separation less than
O(1/kg). The ratio of the parallel and antiparallel
intracules is shown in Fig. 1 and illustrates the Fermi
hole, an exclusion zone around an electron that is

P (r) = n3/? exp(ik-r) , (6.1) respected only by other electrons of the same spin. The
P (u)/P*® (u) B(v,1)
1
0.8 08
0.6 0.6
0.4 0.4
0.2 0.2
kFU
2 4 & 8 05 1 15 2 25
2
1.5
v 1 ( . .
Fig. 1. Top left: ratio of the parallel to the
05 antiparallel position intracule in jellium. Top
right: ball function for the momentum intracule
0 in jellium, see Eq. (6.11). Bottom left: specific
0 1 2 4 5 Wigner intracule for jellium. Bottom right: con-
u tour plot of specific Wigner intracule for jellium
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Dirac exchange functional can be obtained from the
Fermi hole through

o0

Ex = / u™' [P"(u) — P*P(u)]du

0

3 /3\ /3 \
4<n> pe . (6.7)
The specific momentum intracules are

M (0) = Blo,ke) () (6.8)
Crr N npy 14
M"(v) = B(v, ke) (%) — 0(0) 8 (6.9)
and
(o) = Y 5P
M(v)—B(v,kF)<2) 5(v)% (6.10)

for 0 < v < 2kg and, because electrons in jellium have
momenta |k| < kg, the intracules vanish for v > 2kg.
The function

302(2R — v)* (4R + v)
16R®

gives the probability [13] that two points in a sphere of
radius R (i.e. two momenta in the Fermi ball) are
separated by a distance v. It is shown in Fig. 1. The
Thomas—Fermi kinetic energy functional [59, 60] can
be found from the second moment of the momentum
intracule

B(v,R) =

(6.11)

1,
Et —%/ v"M (v)do
0
_ 3 025 s
_10(3n) 7. (6.12)
The specific Wigner intracules are
2
W (u, v) = 4mu*B(v, kg) <%) : (6.13)
_ 3]1(1(]:1,{) 2 ,02
1 _ 2 N AR N L
W' (u,v) = 4nu lB(v,kF) ( ol o(v) 1
(6.14)
and
. 9 (i (keu)\? p’
_ 2 _Z L
W (u,v) = 4nu lB(v,kF) 2( = o(v) 7
(6.15)

and this is shown as a 3D plot and as a contour plot in
Fig. 1. The 3D plot reveals that whereas the Wigner
intracule vanishes beyond v = 2kg, it grows rapidly
as u increases. This reflects the fact that the number of
electrons at a distance u# from a reference electron in
jellium increases as u” for simple geometric reasons.
Unfortunately, because the specific Wigner intracule
grows without bound as u increases, the integral

Eq. (4.9) diverges and the specific action intracule 4(w)
is infinite in jellium.

7 Intracules for atoms and molecules
7.1 He atom using HF/[ 1s]

It is illuminating to begin our survey by examining a
system of transparent simplicity, for which all of the
intracules can be written in compact form. The HF
wavefunction for the ground state of the helium atom
places both electrons in a spherical orbital. If the orbital
is approximated by a single Gaussian function (for
example, using the STO-1G basis), one obtains the crude
position and momentum wavefunctions

200\ 32
Y(r,n) = <?> exp[—o(r] +73)] (7.1)
and

1\ PP+
o) = (51,) ew(-202) (1.2

Note that these are also the exact wavefunctions of a
pair of uncoupled, 3D harmonic oscillators. The corre-
sponding intracules are then found to be

P(u) = (%) 3/2471142 exp(—o?) | (7.3)
3/2 2
M(v) = <4Lm) 40 exp <— :_oc) , (7.4)
W(u,v) = 2u;vz exp (ocu2 — :;) (7.5)
and
2
Alw) = 2%Ko(w) . (7.6)

The value of the exponent that minimises the
HF energy of the helium atom is o= (33 —8v2)/
(9m) ~ 0.767 and Fig. 2 shows the intracules of
Egs. (7.3), (7.4), (7.5) and (7.6) for this value of the
exponent.

The position intracule vanishes at u = 0, indicating
that there is no chance of finding the two electrons at the
same point in space. Initially, it grows q1uadratically with
u but it reaches a maximum at u = o'/ = 1.14 au and
then decays quickly as u increases further. The proba-
bility of finding the electrons more than 3 au apart is
only 0.003.

The momentum intracule vanishes at v =0,
indicating that there is no chance of finding the two
electrons with identical momenta. Initially, it grows
quadratically with v but it reaches a maximum at
y=20'? =~ 1.75 au. The momentum intracule decays
as v increases further, but does so more slowly than
the position intracule, implying that a large relative
momentum is more likely than a large separation. The
probability of the relative momentum exceeding 3 au is
more than 0.118.
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P(u) M(v)

0.7

0.6 0.4

0.5 0.3

0.4 ’

0.3 0.2

0.2

0.1 0.1

u
1 2 3 4 5 1 2 4 5

A(w)
0.3
0.2
0.1

Fig. 2. Position (top left), momentum (top right),
Wigner (bottom left) and action (bottom right)
w  intracules for the helium atom using a restricted

The Wigner intracule in this very simple system
is exactly the product of the position and momentum
intracules: this is rare and, in more complex systems,
such a factorisation is not observed. The contour plot in
Fig. 2 reveals that W(u, v) is everywhere positive and
possesses a single maximum at (¢~ "2, 2a!/?). It follows
that, if the exponent o were varied, the maximum would
move along the hyperbola uv =2 au.

The action intracule is independent of the exponent o,
reflecting the complementary responses of the position
and momentum wavefunctions to changes in the expo-
nent. Our A(w) thus applies not only to the helium atom,
but to any helium-like ion (H™, Li", Be’", etc.) in a
single-Gaussian basis. The intracule vanishes at w = 0,
confirming that there is no chance of finding the two
electrons either at the same point or moving with iden-
tical momenta and, because of the logarithmic singu-
larity of Ko(w), the intracule initially behaves as w?logw.
It reaches a maximum at w = 1.55 au and thereafter
decays exponentially with w.

7.2 He atom using HF/6-311G

The foregoing example was chosen for its simplicity, not
its realism, and one may suspect that a more accurate
wavefunction would yield very different intracules for
the helium atom. To explore this, we constructed the
four intracules again using the HF/6-311G wavefunction
and these are shown in Fig. 3. Comparing this with
Fig. 2 allows us to assess the effects of improving the
basis set but not, of course, of incorporating electron
correlation [16].

The position intracule does not change qualitatively
but becomes flatter and more diffuse. The larger basis set
gives an improved description of the wavefunction at
small r and large r and evidently increases both the
probability of finding the electrons far apart and the
probability of finding them close together.

The momentum intracule also becomes more diffuse
when the larger basis set is used, implying that large

Hartree-Fock (RHF)/[1s] wavefunction

relative momenta are more likely. This follows from the
improved description of the wavefunction near to the
nucleus.

The Wigner intracule yields significantly more infor-
mation. Both figures reveal that the intracule is every-
where positive, with a single maximum indicating that
the two electrons are most likely to be found at a sepa-
ration ¥ = 1.1 and moving with relative momentum
v = 1.6. However, the use of a better basis set leads to
elongation in both the u and v dimensions and the
resulting intracule has a more interesting shape.

Surprisingly, the action intracule is less sensitive to
basis set than any of the other intracules, including the
Wigner intracule from which it is derived. Indeed, to
the naked eye, the action intracules in Figs. 2 and 3
appear identical. This curious discovery suggests that
the distribution of the product rj,p;> can be obtained
with unexpected accuracy, even using modest wave-
functions. Comparisons for larger atoms seem to
confirm this.

7.3 Li atom using HF/6-311G

We next consider the lithium atom, the intracules of
which are shown in Fig. 4. To facilitate comparisons
with the helium intracules in Fig. 3, we used the 6-311G
basis set and restricted (open-shell) HF (RHF) theory.
The position intracule for lithium, unlike that for
helium, is bimodal. The first maximum (at u = 0.6)
shows that two of lithium’s electrons are frequently
found close together. This arises from the two 1s elec-
trons. The second maximum (at u = 3.2) shows that one
is also likely to find two of the atom’s electrons quite
distantly separated. This originates from one of the 1s
electrons (which are generally close to the nucleus) and
the 2s electron (which is usually far from the nucleus).
The momentum intracule for lithium has only a single
maximum. This is surprising for one might have
expected two peaks, just as in the position intracule. In
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fact, there are two contributors to the momentum
intracule, but they are sufficiently broad that they merge.
This is an example of the general observation [14] that
momentum intracules are usually blander, and their
information content is less accessible, than their position
analogues.

The Wigner intracule is more interesting. It contains
two well-separated peaks, one at (0.7, 2.5) that arises
from the 1s/1s pair and the other at (3.2, 1.6) that arises
from 1s/2s pairs. If one mentally projects the Wigner
intracule onto the u-axis, as in Eq. (4.7), one can see how
the bimodal position intracule arises. Similarly, if one
projects the Wigner intracule onto the v-axis, as in
Eq. (4.8), one can see how the overlap of the two peaks
leads to a solitary maximum in the momentum intracule.

The action intracule fails to inherit any of the
interesting structure of the Wigner intracule and is
characteristically dull. It has a much fatter tail than its
helium analogue (Fig. 3).

7.4 Be atom using HF/6-311G

The largest atom that we consider here is beryllium and
its RHF/6-311G intracules are shown in Fig. 5. These
can be compared directly with the intracules in Figs. 3
and 4.

The position and momentum intracules are bimodal
and appear superficially similar but determining the
origin of these peaks is difficult until we examine the
Wigner intracule. The latter has three well-separated
maxima, at (0.5, 3.4), (2.1, 2.3) and (2.9, 0.8), and, since
the electron configuration is 1s~ 25, we can immediately
assign these to 1s/ls, 15/2s and 2s/2s pairs, respectively.
If we mentally project the Wigner intracule onto the
u-axis, we see that the inner peak of the position intra-
cule comes from the 1s/1s pair and the outer peak from a
combination of the 1s/2s and 2s/2s pairs. If we project
the Wigner intracule onto the v-axis, we learn that the
inner peak of the momentum intracule comes from the
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2s/2s pair and the outer peak from a combination of the
1s/1s and 1s/2s pairs. This interpretation is similar, but
not identical, to the slightly incorrect one presented in
our recent paper [14] on momentum intracules.

Finally, for completeness, we observe that none of the
interesting structure of the Wigner intracule survives
into the action intracule, which is dull and fat-tailed, as
it is in lithium.

7.5 Dissociation of the H> molecule

We conclude this overview with a simple but interesting
example of the Wigner intracule of a molecule. The HF/
6-311G Wigner intracule for the H, molecule as it
dissociates is shown in Fig. 6. The upper and lower rows
of the figure show the RHF and unrestricted HF (UHF)
intracules, respectively.

At a bond length R =2 bohr (the leftmost plots in
Fig. 6), the RHF and UHF wavefunctions are identical
and so, therefore, are the corresponding Wigner intra-
cules. The intracule has a single maximum at (2.0, 0.9)
and is reminiscent of that for the helium atom.

At a slightly longer bond length, it becomes ener-
getically advantageous for the molecular orbitals to
break symmetry and the RHF and UHF descriptions

HF (bottom row)

become distinct. At a bond length R = 5 bohr, the RHF
intracule is strongly elongated in the u# dimension but
is relatively unchanged in the v dimension. In contrast,
the UHF intracule is translated to larger u values but
remains compact.

At R = 8 bohr, the dissociation is almost complete
and the restricted and unrestricted intracules are even
more different. Whereas the RHF intracule is strongly
delocalized and has developed one maximum near (2, 1)
and another near (8, 1), the UHF intracule retains its
compact shape and has simply translated further in the u
dimension.

These strikingly different Wigner intracules can be
easily understood. As is well known, the RHF descrip-
tion of dissociated H, involves an equal mixture of the
ionic and covalent resonance contributions. In the ionic
contributions, both electrons reside on one atom and are
therefore close together. In the covalent contributions,
one electron resides on each atom and the electrons are
thus far apart. This explains the two peaks in the RHF
Wigner intracule. In contrast, the UHF description has
only covalent contributions and, hence, there is only a
single peak in the UHF Wigner intracule.

The position and momentum intracules of dissociat-
ing H, are shown in Fig. 6 of Ref. [14]. The Wigner
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intracules presented here thus complete the portrait
initiated in our earlier work.

8 Closing remarks

We believe that two-electron distribution functions and,
especially, the Wigner intracule have a bright future in
quantum chemistry. They carry the explicit two-electron
information that conventional density functional theory
lacks and, if sufficiently efficient algorithms can be
developed for their computation, they offer a powerful
and systematic route to enhanced accuracy in the
theoretical modelling of chemical systems. We encourage
chemists to avail themselves of the insights that intra-
cules can provide and we hope that this overview will
stimulate interest in these simple but powerful functions.
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